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1. I N T R O D U C T I O N  

The standard expression for the fluctuation of the occupation numbers in Bose 
statistics,(1) 

(An/~)2= 1 q-(1/~) (1) 

meets with difficulties when applied to the ground state at very low temperatures. 
As an asymptotic formula for this special case, (2) we propose instead 

(Ano/~0) 2 ~  [(N/~o) - -  115 (2) 

as T - ~  0. In contrast to formula (1), this fulfills the fundamental requirement that 
the fluctuations in the population o f  the lowest energy level must go to zero with the 
temperature--in Bose statistics, no less than in Fermi statistics. 

To be sure, formula (1), which implies relative fluctuations of  about 100 ~ ,  
is "exact"  in as much as it follows without approximation f rom the grand canonical 
ensemble. This ensemble is tacitly implied in most current formulations of  quantum 
statistics; and as a rule, there are no observable differences in the results obtained 
f rom the various ensembles. This is certainly true for Fermi statistics, and for Bose 
statistics the only exception is when we consider the ground state at very low 
temperatures. 

1 Seminar of Theoretical Physics, Trondheim, Norway. 
Department of Theoretical Physics, University of Oxford, Oxford, England. 

329 



330 I. Fujiwara, D, ter Haar, and H.  Wergeland 

In this particular case, however, it must be remembered that, strictly speaking, 
the grand canonical ensemble describes open systems only--although incidentally 
it almost always gives correct formulas even for closed systems. The large fluctuations 
in n o indicated by (1) thus refer to systems which can freely exchange particles with 
an infinite reservoir or with another phase. But this picture is not at all appropriate to 
experimental situations where the system is a macroscopically conserved amount 
of matter: in Bose statistics, n o may, at sufficiently low temperature, be a macroscopic 
quantity and its relative fluctuation must certainly vanish lest the theory predict 
very startling phenomena. 

For a proper treatment of the present problem, it is thus necessary to take 
conservation of the total number of particles N into account. This will be shown to 
require, for the ground state at low temperatures, formula (2) instead of formula (1). 
A more general formula comprising both (1) and (2) as special cases will be given 
in Section 2. 

These formulas are applied in Section 3 to the ideal Bose gas. Since the result 
is based upon the method of steepest descent, we shall in  Section 4 briefly consider 
a two-level system as a model which can be treated without recourse to this method. 
Auxiliary calculations and an extension to particles with a continuous energy 
spectrum are collected in the Appendices. 

Before discussing specific examples, we shall write down a description of the 
canonical ensemble which is suitable for the present purpose: Let the molecular 
energy levels in a closed system of N noninteracting particles be Es, s = 0, 1, 2,.... 

The possibility of a continuous energy-spectrum should also be taken into account, 
but we defer the necessary amendments to Appendix C. In Bose statistics, the number 
of particles ns occupying the sth level may assume any integer value ns = 0, 1, 2,..., 
but we shall now consider the total number of particles 

n~ = N (3) 
S 

to be fixed in the strong sense--not merely in canonical average. Accordingly, the 
sum over states must be restricted: 

Z = E '  1-I e -B .... (4) 
n s 8 

Here, ~ '  denotes a multiple sum over only those sets of occupation numbers {ns} 
that satisfy the condition (3). 

Such a condition is conveniently imposed upon the summation (4) by multi- 
plying each term of the unrestricted sum by a discontinuous factor: 

~i t I t ;  when (3) is fulfilled (1/27ri) f dtexp - - (N- -  ~n~)t = 
-~i ~ otherwise 

In this way, the sum over states can be written as an integral 

Z = (1/27ri) f dt e-NtI-I I~ (5) 

which can be evaluated by the Darwin-Fowler method. 
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Usually, the sums over the ns are understood to be from 0 to 0% 

= 1/(1 - -  e t-a'') (6) 
ns=0 

but this is not the only possibility: we may truncate them at any number M ~> N, 
inserting, instead of the sum (6), 

NIs 
= (1 -- e(M~+a)(~-Br - -  e ~-B~') (7) 

qZ~0 

for the sth factor in the integrand (5). So far, the replacements of the infinite series (6) 
by finite sums (7) are quite arbitrary. They cannot alter the exact value of the 
integral (5). 

In most cases however, only asymptotic approximations for large N are available, 
and in order to obtain them it will sometimes be a considerable advantage to take the 
factors of the infinite product in the form (7), which are entire functions of t, instead 
of  (6), which are not. This will turn out to "temper" the analytical properties of the 
integrand, and thus to make it more amenable to a saddle-point approximation. 
We shall here choose all M~ = N, i.e., pick the smoothest form possible (salva 
veri tate)  for the integrand (5). 

Incidentally, this choice (M = N) leads to the particular form of distribution 
law for the occupation numbers which was proposed by Gentile (3) on somewhat 
different grounds. Although Gentile's procedure (7) cannot claim to be more than 
a computational device, we shall see that it is useful for boson systems at very low 
temperatures. Actually, it extends the applicability of the method of steepest descent 
to a range of states where in the usual formalism this method was very problematic. 
For  the purposes of our fluctuation problem, we shall therefore adopt his version 
of the sum over states, 

Z ---- (1/2~vi) f dt e -N~ I-I {(1 - e-D"9/(1 - e-"~)} (8) 
8 

where D = N + 1, z = ties -- t. By the definition (4) of our ensemble, the average 
occupation numbers and their fluctuations are given by 

= - e ( l n  z ) / e ~ ,  zln~ = e~(ln z ) / e ( ~ )  ~ (9) 

respectively. 

2. A V E R A G E  A N D  F L U C T U A T I O N  OF n o 
I N  T H E  S A D D L E - P O I N T  A P P R O X I M A T I O N  

Using the saddle-point approximation, we get from Eq. (9) 

In  Z = - - N t  4- ~ X(fle, - -  t) (10)  
s 
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where 

X(Z) = --ln(1 - - e - ~ ) + l n ( 1  - - e  -D~) 

and terms of the order In N have been neglected. The principal saddle point t is the 
real root of the equation 

N =  ~ 2 s ,  2 = ~X/~t = --X' (11) 
8 

While X is a universal function, the parameter t depends specifically upon the 
system through the energy spectrum Es. Inserting the approximation (10) in the 
general equations (9), one thus obtains 

g~ = 2 8 ,  An ,~  = 2s[1 - ( o r / a f t , 3 ]  (12) 

These formulas are of a well-known type, except that Gentile's expression 

2(z) = [1/(e ~ -- 1)] -- [D/(d )~ -- 1)], z =/3E -- t (13) 

differs from the familiar distribution law of Bose statistics: 

f(z) = 1/(e ~ -- 1) (14) 

by the extra term --Df(Dz). This term, however, makes the function g = 2(z) always 
finite, positive, and monotonically decreasing: 

2(--oo) = N, 2(0) = N/2, 2(oo) = 0 (15) 

with a steep drop at z = 0 (Appendix A). 
By the usual thermodynamic identification, t is related to the chemical potential 

(t =/3IX ). At ordinary temperatures, the chemical potential is negative whether 
we define it by the conventional means or by Gentile's formula. Then, z = /3 e  -- t 
is positive for all quantum states and the term --Df(Dz) is completely negligible, 
as of course it must be in this case. In the usual formalism, which employs the 
distribution law (14), z must in fact always be positive, that is, t can never exceed/3%. 

Gentile's function g = 2(z), on the other hand, is always finite and z may well 
assume negative values, as indeed it does for the lowest quantum state at sufficiently 
low temperatures. Thus, t may exceed fie0 although it must always remain below/%1 
[t >/3el  >/3E0 violates Eq. (11.); cf. Eqs. (15)]. The thermodynamic states in which 
we are here primarily interested are just those belonging to positive values of t: 
0 <~ t < ]?q.  When t = 13%, we have n0 = 2(0) = N/2: one half of the particles 
are in the ground state. At absolute zero, ~ = 0% we shall have t = +0% and 
in Eq. (14), go ----- N, as must be the case. 

Our main concern, however, is the fluctuations. These depend upon the 
function 20 entering in the formula 

Ano 2 = 2011 -- (Or/a/3%)] (16) 
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which, as we shall see, embodies both (1) and (2) the former at ordinary temperatures 
and the latter in the limit T ~ 0. 

In order to make this plausible, we use the identity [see Appendix A, Eq. (44)] 

Xo = D~o -- ~o 2 + (2no -- N)f(Zo) (17) 

At  ordinary temperatures, when the term Df(Dz) in Eq. (13) can be neglected, we have 
clearly f(zo) = ~o, and accordingly, 

fo = (~o) 2 + ~o 

which leads to formula (1). At sufficiently low temperatures, however, z will be 
negative and we may have, by Eqs. (12) and (13), f(zo) = n o -  N + ~(N), while 
~o = (~(N), that is, 

X0 = (N -- ~o) 2 + (9(N) 

and this gives formula (2). 
So far, we have disregarded the factor 1 -- (~t/Ofie) in Eq. (12). By variation of 

the saddle-point equation (11) with respect to the spectrum, one finds 

(Ot/Ofi%)N = X0/Z Xs < 1 (18) 

Whatever the magnitude of ~t/OfE, this term can therefore only decrease the flue- 
tuation. At ordinary temperatures, it is obviously negligible, and as we shall see, 
also at sufficiently low temperatures. 

However, as was pointed out by Hiis Hauge, the factor 1 -- (~t/OfiEo) may be 
extremely important: as he showed ~4) in the case of the ideal Bose gas, this factor 
will effectively suppress the fluctuation to zero at all temperatures below the Einstein 
transition point although X0 is of the order N ~ in most of this range. But in any case, 
Ot/OflE will depend upon the spectrum and, as will be shown both for the ideal gas 
and the two-level systems treated in Sections 3 and 4, the fluctuation formula (2) 
subsists in the limit T--~ 0. 

With suitable adjustments, the preceding formula (16) may be extended to systems 
with continuous or (piecewise continuous) energies. The average number of particles 
with energy below e is then given by (Appendix C) 

BE 

= ( g ( x )  dx 2(x -- t) (19) N(e) 
. /  

0 

and its fluctuation by 

3. THE IDEAL BOSE GAS 

According to Eq. (11) the saddle point t will be determined by 

N = ~, {[1/(e ~ - ~ -  1)1 -- [D/(e D(e*-t)- 1)]} (20) 

822/z/4-3 
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Now, for macroscopic volumes V, the energy levels of an ideal gas are so densely 
spaced that, even at the lowest attainable temperatures, they cannot be resolved in 
thermal experiments. One is therefore inclined to replace sum by integral [cf. Eq. (67)]: 

--,. [fia/2/2"(3/2)](V/ha) f 0/2 dE (21.) 
E 

where h -= (h2fa/2rrm)l/2 is the thermal de Broglie wavelength. In the usual formulation 
of Bose statistics, this causes a well-known difficulty because the function 

I(t)  = [1/2'(3/2)1 f [xZ/2dx/(e ~-~ -- 1)l 
0 

(22) 

has an essential singularity at t = 0. In Gentile's formulation, however, this is exactly 
compensated by the second sum in the curly bracket arid thus the integral 

oo 

]~ = (g/h3)[1/~(3/2)l f x 1/2  dx 2(x -- t) ( 2 3 )  
, /  o 

is regular along the entire real t axis. We may therefore with some confidence use 
Eq. (23) to determine the saddle point. At temperatures above the Einstein transition, 
t will be negative. This is the domain of validity of formula (1), which does not interest 
us here. Upon cooling of the system, the saddle point will (ceteris paribus) move to 
the right along the real axis, reaching t = 0 at the temperature 

Te = [N)OTa/2/~(3/2) V] 2/3 (24) 

At temperatures T < Te ,  the saddle point appears on the positive real axis 
and its location is roughly given by (Appendix B) 

t [1  - h21V2/a (25) 

which is of the order N-2/~ for moderately low temperatures T <~ Te .  To obtain 
a more accurate value, one must solve for t =/~eo -- z the equation [Appendix B, 
Eq. (58)] 

N = 2(z) § (V/h a) ~(3/2) + ~(N) (26) 

Since 20 = no and V~(3/2)/A 3 = (T/Te)Z/2, this is the same as London's equation (5) 

H0 = [1 -- (T/T~)a/q N (27) 

which is thus true in a quotient asymptotic sense. 
It is not difficult to map the whole range of temperatures (0, Te) upon the 

range (0% 0) of t, but such detail is not necessary for our discussion of the relative 
fluctuation: 

(ZJno/~o) ~ = (2o/~o2)[1 -- (at~eft%)] (28) 

All we need is a survey of  no, 20, and at/e/~o in their dependence upon the state. 
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For the ideal gas, one finds [Appendix D, Eq. (83)] 

et/e~,o ~ 20/[20 + w(v/a.)~/~] (29) 

At the transition point T = Te [Appendix D, Eq. (86)], 

20 ~ Na/Z, no ~'~ N~/3, V/A ~ ~.~ N (30) 

The relative fluctuation will therefore be of order 1, or more precisely, it is just 
given by the standard formula (1). 

In the middle of the range, T ~< T~ [((~(z) ~-~ N-~], we have [Eqs. (27) and (46)] 

20 ~'~ N~, ~o ~'~ N,  VIA 3 ~.~ N (31) 

so that 2o/(~o) z is still of order 1. Here, however, 6t/~fieo is indeed close to 1, as 
observed by Hiis Hauge. (4~ From the relations (29) and (31), we have 

1 - -  @ t / ~ % )  ..~ Ns/3 / (N 2 + N 5/3) ~-~ N -~/3 (32) 

hence the relative fluctuation vanishes to this order. At still lower temperatures, 
z is negative and ultimately of larger order than N -1. In this case, the order of X0 is 
given by Eq. (84) and (85) of Appendix D: 

20 ~ ( U  - -  ~o) ~ ~ (V/Z~)~ (33) 

The magnitude of ~t/~13E o then depends upon the ratio 

( v /  ,~ 3)~ / w ( v /  a 3)~ /3 ~ N1/.( T/ r~)~ (34) 

That is, for temperatures T ~ TEN -1/6, the factor, 1 -- (~t/~fiEo) is of order 1 and the 
fluctuation approaches 

(Ano/~o) ~ ~ [ (N/~o) -  112 (35) 

in agreement with formula (2). These are certainly very low temperatures, but it is 
noteworthy that they vastly exceed the range of temperatures T < TEN -~/3 envisaged 
in Planck's formulation of the third law. a 

4. T W O - L E V E L  SYSTEMS 

This model may be even more nonphysical than the ideal gas, but it will allow 
us to dispense with the saddle point approximation. It is now convenient to write 
the sum over states 

Z = (1/2~ri) f (dt/t w+z) I71 {1 - -  te-~"} -1 
8 

(36) 

For a related discussion of the third law, see Casimir ~ and ter Haar and WergelandY ~ 
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There is no need to " t a m e "  the integrand by t runcat ing the sums at  n~ = N since 
we can now evaluate it exactly. For  any system of  noninteract ing bosons,  the occu- 
pat ion number  of  the lowest energy level will thus be given by 

1 ~ d t  t e - ~ o  1 

Z g o = ~ - - ~ ) N + l  (1-- te-Z~0) 2 1 - -  te-S~l 
(37) 

and at low temperatures  only the few lowest levels will give factors appreciably 
different f rom 1 in the product .  Therefore,  in the extreme case k T  < ez - -  % ,  even 
a model  with these two levels only must  suffice to describe the popula t ion  of  the 
lowest level. 

For  the two-level model,  one can of  course write down exact expressions, e.g., 

1 1 
=- ~ an t  N 

1 - -  te-~Eo 1 - -  te-r N = 0  

te-B~o 1 
(1 - -  te-~o) ~ 1 - -  te-O~ = ~ butN 

(38) 
a ~  = e - r e ' z ( 1  - -  e - D Z ) / ( 1  - -  e - z )  

bN = a~v{[1/(d - -  1)] - -  [D/(e ~ - -  1)]} 

where z = fi(e0 - -  e0. 
Since Z = aN,  we have therefore, by Eq. (37), for  the occupat ion number  of  the 

ground state 

no = bN/aN (39) 

which is precisely Genti le 's  fo rmula  (13) with t = fiE~. 
Now,  this is part ly fortuitous,  since models  with three levels and so for th give 

rise to  more  complicated formulas.  However ,  the result (39) may  serve to show that  
Genti le 's  device gives suitable interpolat ion formulas  for  the ground state at very 
low temperatures.  In  particular,  the fluctuation of  n0 will for  the two-level system 
always be given by Eq. (17), Ano ~ = X0, which at  sufficiently low temperatures  leads 
to formula  (2). 

A P P E N D I X  A.  PROPERTIES OF G E N T I L E ' S  F U N C T I O N  ~ = ~c(z) 

The function 

2(z) = [1/(e ~ - -  1)1 - -  [D/(eD. ~ - -  1)1, D = N -  1 (40) 

is (i) positive and (ii) monotonical ly  decreasing f rom 2( - -  oo) = N through 2(0) = N / 2  

to X(OO) = 0. 

Proof. I t  is true for  an infinite set o f  integers D = 2% Writ ing 

2 = [ 1 / ( x -  1 ) ] -  [2~/(x ~ " -  1)], x = e z 
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and noting that  
n - -1  

x ~ " -  1 = ( x - -  1) I-I ( 1 - - x  l~) 
k = 0  

we have 

and 

337 

(41) 

--d2/dz= [1/(x --1)]~11-- [(22nx~"-1)/~=2 (1 + x2~)2]I (42) 

The right hand  side of  Eq. (41) is clearly positive whether  we have x > 1 or  x < 1, 
which proves that  2(z) is always positive. In  order to see that  2(z) is monotonica l ly  
decreasing, one may  rewrite the curly bracket  in (42) as 

n- -1  

1 - g l  [2 / (x  ~-~ + x - ~ - l ) ]  2 
t = 0  

This is always positive, which proves the second par t  o f  our  proposit ion.  

I t  is further  useful to note that  2 = --d2/clz is an even function of  z = fie - -  t 
and has a sharp m a x i m u m  ~N2/12 with a width Az ~ 1/N at z = 0. Since we must  
always have 

f ~ 2 d z =  IN/ for  a = - - o o  
2 for  a = 0  

we shall in the limit N ~ oo have 

2/N--~ unit  step function, 1 - -  O(z) 

2/N ~ 3(z) 

The special values 2(0) = N/2 and 2(0) = (D 2 - -  1)/12 follow directly f rom the 
Bernoulli expansion 

f(z) -~ 1/(e ~ - -  1) = (l /z) - -  (1/2) + (z/12) - -  (z3/720) + ... 

I t  is convenient  to rewrite the quanti ty 20 entering the fluctuation formula  (16) as 

2 = DX -- 23 +- (22 - -  N)f(z) (43) 

which follows by differentiation of  (40). We can thus relate 20 to no ---- 20 and f(zo). 
In order to survey 2 as a function of  z, we note, that  for  0(z) > N -1, 

f(z) ~ t 2(z)' z > 0 (44) 
12(z)  - D ,  z < 0 
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Inserting 2o = rio, we obtain then from Eqs. (43) and (45) 

t(no) 2 § ~o,  z > 0 (45) 
2 o ~ ' ~ ( N _ ~ o )  ~ §  , z < 0  

If, on the other hand, O(z) ~ N -1, then 

f , ~  N = / 6 ( N -  2~0) (46) 

~ [rio -- (N/Z)] ~ § (N~/12) 

follows from the Bernoulli expansion of (40). Since the radius of convergence is 
] z I = 2rr, the solution z ~ (6 /D) (N  --  2~0) is not accurate at its extreme values •  

A P P E N D I X  B. L O C A T I O N  OF T H E  SADDLE P O I N T  

In first approximation, we replace the sum (20) by an integral 

oo 

N = f g(x)  dx  2 ( x - -  t) 
o 

where 

(47) 

g = (V/Aa) xl /2/F(3/2)  (48) 

2 = [1/( e ~ - t -  1)] -- [D/(e v(~-O - -  1)] 

Here, 2 is perfectly regular on the path of integration, but since it is a difference 
of two terms which we shall sometimes need to consider separately, a convention 
must be made about how to bypass the point x----- t. Any convention will do if 
applied identically to both terms. We shall choose to consider both as Cauchy principal 
values: 

ID = [D/F(3/2)] P f ~  [x 1/2 ax/ (e  ~ - -  l)] (49) 

and correspondingly fo r /~ .  For  the small positive values of t in which we are mainly 
interested, the principal value of/1 can most conveniently be displayed by the contour 
integral 

/1 = [(--1/2)/_/'(3/2)] f [z*/2/(e "-* - -  1)] dz (50) 
C 

where C is a lace around a branch-cut along the positive real axis. Noting that z */= 
changes sign across the cut, one sees that the contributions from small in identations 
above and below z = t cancel, so that the contour integral (50) indeed represents 
the principal value desired. Expanding 

fc = fe {(t § d /[expW - 11} 

1 

= k ( : ) ' "  f { , (*m--  & ' / [ e x p ,  - 11} 
0 
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where ] ~ ] > t on C, and using one of  the defining integrals of  Riemann's  ~-function (s) 

(0 +)  

~(s) = [1/(e 2 ~ i ~ -  1)][1/Ffs)] f [z ~-1 dz/(e z -  1)] 
- -  ao 

one obtains the power series 

/1 = ~ [~(} --  n)/n!] t ~, [ t l < 2zr (51) 
n = 0  

Due to the small radius of  convergence (I t [ = 2zr/D), the corresponding series 
is useless for  the representation of  l o ,  but  here one can proceed directly f rom the 
definition: 

J: (; s;) P x~/2 d x f ( D [ x  - -  t]) = lira ~ - t  + (z -k t ) l / ~ f ( D z )  dz (52) 

Rewriting the first part  

and using the identity 

f - ,  = f t  (t  - -  z ) l / 2 f ( - - D z )  dz 

f ( - - D z )  = - -  1 - -  f ( D z )  

we have 

f ~  f t  f t  (t + z ) l / 2 -  ( t -  z)l/2 dz + fo~ ( t -+-z ) z /2dz  P = --  (t - -  z) 1/2 dz + e D~ - -  1 e ~ 1 
0 0 0 t - -  

- t3/~(-~ + J1 + J~) 

Here, the two latter integrals can be neglected. 

1 p .  

J1 = [ {[(1 + x)  1/2 --  (1 - -  x)l/2]/(e ~ - -  1)} dx: 
, )  

0 

in the interval 0 < x < 1, we have, for  instance, 

(1 + x)  1/2 - -  (1 - -  x) 1/~ < ~x < ~x 1/2 

< ~ ( [xl/~ dx/(e D~ --  1)] < ~ ( 1 / D t ) 3 / ~  [yl/~ ay/(e~ --  1)] J1 
,2  0 0 

= ~[1/(Dt)~/~l ~(~) 

o oz 

J2 = | [ ( 1 - k x )  1/z dx/(e  Dt~ - -  1)]: 
d 

1 

for  x > 1, we have (1 -k x) 1/2 <~ (2x) ~/z, and accordingly 

f < ( [ ( 2 x )  ~/2 dx/(e Dt~ --  1)] < [(2x) 1/2 d x / ( e  D ~  - -  1)1 J~ 
J 1 0 

= [2~/~/(Dt)~/~] ~(~) 

(53) 

(54) 



340 I. Fujiwara, D. ter Haar,  and H .  Wergeland 

These inequalitites could be considerably sharpened, but they suffice to show that, 
for those values of t (~ . .N -2/~) in which we are primarily interested, we have 

f g dx  2 ---- (V/)0){~(3/2) + [Ut~12/F(5/2)] -t- (9(N-1/2)} (55) 
0 

This gives a saddle point 

t ~ ( ;~ /v~ /~) [1  - (T/Tg~/~] 

which has the right order of magnitude, but the proportionality factor comes out 
somewhat too small because our density function g exaggerates the weight of the 
lowest quantum state by more than a factor 2 (f~o~,g d x  = 2.7). The most natural 
improvement of  this approximation is therefore London's procedure (5) to exempt 
the ground state from the integration (47), writing 

oo 
N = ~o + (V/)ts)[1/F(3/2)] ~ g(x)  d x  2 (x  - -  t)  (56) 

,s 
2r 

where the lower limit x 0 has to be chosen in such a way that the integral approximates 
the sum over the energies �9 > �9 as closely as possible. We shall show that: 

[1//'(3/2)] f g(x)  dx  2 (x  -- t) = ~(3/2) -t- negligible terms (57) 
xo 

Proof. Assuming tentatively that x0 < t, we can write 

" r r ;; ~ j" r.. = - E . . " : , . i ( e ~  1)] 
X 0 C ~0 

By the same substitutions as in (52), one then obtains 

~ . x - - t )  x 1 / 2 d x =  --  - -  _ ~ o f ( z ) ( t - - z ) l / 2 d z  

(c~ ( x-tO ( t  -b" ~)112 - -  (t - -  ~)1/2 
P J D f ( D [ x  - -  t]) x 1/2 dx  = D .  e De - -  1 a ~  

ge 0 ~ 0  

+ D~ f ~  (t  + z)  1/~ dz  + 2 [x3oi~_t3/2 ] 
~-~o e v " -  1 D-~ 

or, taken together, 

~  --  t)  + P f D S ( D [ x  - -  t]) x a12 dx  = --  ~ [Dt a12 - -  N x  a12] 

-o~-~~ (t + ~)11~_~ (t7 - E)I/~ d~ + D 

+ ( e D~ - -  1 e ~ - -  1 1 t - - x  o 

' e De - -  1 
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If  instead we assume Xo > t, we get 

flo 2.. P xl/Zf(x --  t) dx = --  -j + ~.o-t (t + ~)~/' --  (t --  ~)1/, d~ 
~ 0  e ~ - -  I 
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p C  

/ I  ( t  + 
j x ' / ' D f ( D [ x  -- t]) dx = D f d~ 

xo Xo_ t e D~ - -  1 

or, taken together, 

p f x~ @ f ~ _ 32 ta/~ _ [ _ f ~ ~  e e --  1 dtl "• D(t-+--~)-l/2eDe_ 1 d~ 
0 93 0 

+ e D -  1 e ~ - -  1 to--t  

This can be written 

( t  + ( t  D(t tt + o t 

__-2 t./. § jt e' 1 d~ --  j:o e D' s'i/~" --  J 2(~)(t + ~)i/. d~ 
3 0 -- t -- Xo--t 

where in the most interesting range of temperatures t ~-~ N -2/3 

/ *  

| [D(t + ~)~/~ d~/(e De --  1)] = Ot3/2J2 ~-~ N -1/2 
d t 

cf. Eq. (54); 

+ - ( t  - - f ~)1/2 ~)1/21 d~/(e e 1)} < at -1/2 [~ d~/(e e --  1)1 < at1/2 ~,  N-l/a 
0 0 

cf. Eq. (53); 

~ 2(~)(t + ~)~/~ d~ = [(1 --  u ~) xo + 2vat]l/2[X(Xo --  t) --  x(t)] "-~ N - 1 1 a  In N 
d Xo--t 

cf. Eq. (56). Similarly, for Xo < t, 

..tff ~  - - t ) §  (*d~_ D f ( D [ x -  t]) I. x 1/2 dx = - - ~ ( D t a / ~ -  Nxg/2) + Dta/z(J 1 § J2) 
o 

f _ 2 ( ~ ) ( t  _ ~ ) 1 / ,  d ~  
t - - x  0 

Having already established the smallness of the two latter terms, we need only 
consider the first term, 

~(Dt3/2 -- Nx~/2) = ~ta/2 § N[t~t + (1 -- tg) Xo]l/2(t --  Xo) 

This is negligible for the following reason: By supposition, we have 

O < t - - X o ~ t - - f i e o  
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and t --/3% ---- ~(N~I 3) (except of course for the extreme temperatures T ,'-, N - Z l 3 T E ,  
where the thermal energy is of the same order as the spacing of the energy levels. 
Accordingly, the term Nit3~ 2 - -  x~o/~] is ~(1) and can also be neglected. 

Therefore, whether we have x0 > t or x0 < t for the lower limit of the continuous 
energies, we may write the equation for the saddle point: 

where 

N = 20 + (V/~3) ~(3/2) + ~(N) 

20 = no = [ 1 / (  e ~  - -  1 ) 1  - -  [ D / ( e  D~ - -  I ) 1 ,  z = l % o  - -  t 

(V/)~ a) ~(3/2) = N ( T / T E )  z/z 

(ss) 

(59) 

which is London's equation (27). 

A P P E N D I X  C. C O N T I N U O U S  E N E R G Y  S P E C T R U M  

Labeling the one-particle energy levels by a single parameter s, we have, in the 
discrete case, expressions of the form 

= ~" gsq)(/3es - -  t) (60) 
8 

and their partial derivatives 

8~1~18~ = grqr - -  t)  - -  (etlSflE,.) 2 gs~(~es  - -  t)  (61) 
8 

where cp is a universal function. 
When the energy spectrum is continuous, the expression corresponding to q~ 

will be an integral 

q) = f ds y (s )  q~(~e(s) - -  t)  (62) 

and the partial differential quotient (61) becomes a Volterra derivative 

8@13/3E(r) = ,/(r) q~'(flE(r) - -  t)  - -  [at~aBe(r)] f ds y(s) ~(fiE(s) - -  t) (63) 

Both cases can be comprised by 

: f g (x )  dx  ~o(x - -  q~ t)  

One has only to take 

g(x )  

discrete spectrum 

continuous spectrum 

(64) 

(65) 
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If  the continuum description is merely an asymptotic approximation in the sense that 

~, --+ f ds when V-+ oe 
8 

the choice of parameter s suggests itself. For example, in the case of the ideal gas, 

E~ = (k~/8mV2/z) s 2, ~'(s) ~ (1/8) 4~rs 2 (66) 

With A = fih2/27rm, this gives for the density function g according to (65) 

g(x) = 7(s)(ds/dt3e)fr ~ 

= (VIA 3) xl/2/F(3/2) (67) 

There are, however, many ways of parametrization, and the simplest for our 
purposes is to choose it in such a way that d(parameter)/d~E = 1, that is, to let 
functional argument and parameter coincide. In order not to confound them, we 
may for a moment write 

g([,l; x) = f ~(~) d~ 3(x -- fle(~)) (68) 

Since we have now 7 ~ g and fie = ~:, this is certainly a circumstantial way of 
writing a trivial identity. However, it serves to emphasize that g is a functional of the 
energy spectrum and this is necessary to keep in mind when carrying out the diffe- 
rentiations. We thus have, according to (68), 

and 

8g/~fle(y) = - - g ( y )  8'(x - -  y)  

8~/SfiE(y)  : f dx[SglSflE(y)] ~o(x - -  t) - -  [St~BilE(y)] f dx gqo(x - -  t) 

= g(y)  ~ ' ( y  - -  t) - -  [3t/Sfle(y)] f dx gO 

The equations of the saddle-point approximation will now be 

(69) 

(70) 

In Z = - - N t  q- f g(x)  dx 2(x  - -  t) (71) 

0 = - - N  + f g(x)  dx 2(x  - -  t) (72) 

--8(ln Z)/SflE : ( N  --  f gx  dx)  (St/SflE) -1- g(fle) 2(fie - -  t) (73) 

or, since the parenthesis is zero, the average number of particles per energy interval 
around e will be 

dN(E)/& ----- fig(fiE) 2(fie - -  t) (74) 
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In order to obtain the fluctuations, we need the functional derivative St/~fi~ ; 
varying Eq. (72) for the saddle point with respect to the spectrum, we have 

s fg~ax = 3N = o 

= f {[~g/s~(y)] s~(y)  dy~ + g~ St) dx 
vo o~ 

~- -- f dy g(y) ~(y -- t) Sfle(y) -k st f dx g(x) ~(x -- t) 
0 0 

o r  

co 

( ~ t / s ~ , ) N  : 2g/f  2g dx (75) 
0 

Let us consider the fluctuation in the number of particles with energies below e. 

= - f'o~g2 dx [1- (fi~ dx/f~ g2 dx)] 

we have finally 

(79) 

Integrating, 

By Eq. (73), their average is 

S ~ N(E) = dx g(x) 2(x -- t) (76) 
0 

The average of their square is given by 

Z N  2 = d~ [3/Sfie(~:)] [SZ/3fie(~)] (77) 

as one sees from the definition (5) of Z and transition to the continuum. Using (74) 
and (76), we have 

Z N  --2 = f d~ [S/3fiE(~e)][--ZN(E)] 

(78) 

and, by Eq. (76), 

f l  ~ [Sg/Sfle(r dx 2(x - - t ) +  [St/Sfle(~)] f~o~ dx 2(x - - t )  SNfSfic(~) 

= -g (~)  2(~: -- t) + [St/SfiE(~:)] dx 2(x t) 
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A P P E N D I X  D. ORDER OF M A G N I T U D E  OF OtlOf~e A N D  X0 
FOR T H E  IDEAL GAS 

In the fluctuation formula (16), we need an estimate of 

8 t /~o  = 2o/Z 2s (80) 

In the denominator, we split off, as before, the term X0 and approximate the sum 
over the excited levels by an integral 

o~ 

E ~ f X( x - t )  g ( x ) d x  
s : : > O  t 

Drawing a diameter and a tangent to the parabola 

g(x) = (r/;~ ~) x '~ /F(3/2)  

through the point x = t, g(t) and remembering the properties of the function 
(Appendix A), it is seen that 

co oo c~ 

t t t ~ (g ' ( t )[x  - -  t] + g(t))  dx (81) 

Carrying out the integrations and inserting 

2(0) = N/2, X(0) -- In D; t ~ A2/V 2/~ 

it follows that 
oo 

f g(x) 2(x --  t) dx ~-~ N(V/A3) 2/3 (82) 
g 

with an error ~(V/A3) ~/3 In N. Since VIA 3 is at most of order N, this error is always 
of smaller order than the main term. We may thus write 

8t/SflE ,-~ 20/[20 -k N(V/A3) ~/3] (83) 

When t is positive, it is natural in the continuum description of the energies to 
associate the states E < t with the Einstein condensate. Since 

t 

f g d x ~ - ~ l  
0 

we have in fact by the mean value theorem 

0 

2g dx 2 ( - - 0 0  ~ 0 < 6) < 1 20, 

This shows that one will recover the same results even if the lowest level is not 
segregated from the rest. It is thus possible to treat the energy spectrum of the ideal 
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gas altogether as continuous, and this description holds good well below the Einstein 
transition point (VA3~ N). I t  does not really break down before V/2t 3 =  (~(1), 
that is, when T ~ T e N  -2/3. Einstein's theory of the ideal Bose gas can therefore in 
principle be formulated without invoking quantization of the translation energies. 
This is gratifying because the ratio (thermal energy/level spacing) is such an enormous 
number at all measurable temperatures that it seems very artificial to consider the 
spectrum as discrete. 

The most convenient expressions for 20, however, are obtained by combining 
Eqs. (45) and (46): 

~o 2, t = 0 (z = / ~ o )  
2o ~ N2, t ~ fiE0 [0(z) =- N -x] (84) 

(N --  ~o) 2, t > /?E o [(9(z) > AT'] 

with London's equation (27) in the form 

( N  - ~o) ~ v / ; o ,  t > o (85) 

At the transition point itself, T = TE, no is not zero, as might be indicated by 
Eq. (27). Here, we have 

and accordingly 

t = O, . .  z = ~r ~ N-2/3  

~o = 2o(Z) ~ 1 / z  ~ N~/~ 

20 "~ no ~ "~ N4/~ 
(86) 
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